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Abstract
The attenuation rate of high-frequency sound waves (phonons) in a bulk
metal was calculated by Pippard assuming the free-electron model and the
deformation-potential coupling of the electron–phonon interaction. We study
the correction to the Pippard theory in a metallic superlattice. A remarkable
feature that we predict is the existence of the resonant absorption of the phonons
by electrons. This happens due to the alteration of the band structures of
electrons arising from their Brillouin-zone folding.

1. Introduction

The attenuation rate of high-frequency sound (longitudinal phonons) in bulk metals was
calculated by Pippard many years ago [1, 2]. Pippard assumed the free-electron model of the
metal and the deformation-potential coupling of the electron–phonon interaction. According
to his result, the attenuation rate τ−1 (τ is the relaxation time) increases in proportion to the
ultrasound frequency, and is given by the Pippard formula:

τ−1 = C2m2

2πh̄3ρv
ω (1)

where C is the deformation potential, m is the free-electron mass, ρ is the mass density of the
metal, v is the longitudinal sound velocity, and ω is the angular frequency. This result was
proved experimentally by Hepfer and Rayne [3] for aluminium, though a slight anisotropy has
been observed depending on the propagation direction.

Recently, a considerable number of studies have been made on the acoustic wave
propagation in multilayered elastic systems, or superlattices. The folding of acoustic band
structure and the opening of new gaps in superlattices have now been known of for a long
time [4–7]. Moreover, in a semi-infinite superlattice with the free surface, the existence of
vibrations or acoustic waves localized at a free surface has been reported [8–14]. These surface
vibrations, or surface phonons, may appear within the extra gaps that exist between the folded
bulk bands and they depend on the kind of layer that is near the surface. Recently, with the use
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of picosecond ultrasonics, Chen et al [15] observed, in Al/Ag superlattices, lattice vibrations
that remain near to the free surface for longer than 200 ps. The frequencies of these surface
vibrations (surface phonons) coincide well with the values predicted by theory taking account
of the internal structure of a unit period. The damping rates of these surface phonons are also
measured and found to vary linearly with frequency (in the range 100–300 GHz for various
bilayer thicknesses) but to be nearly independent of temperature from 70 to 300 K.

This variation of the attenuation with frequency suggests that it is due to an interaction
between high-frequency phonons and electrons, as in Pippard’s theory for the attenuation of
longitudinal sound waves in bulk metals [1]. However, there is a quantitative discrepancy
between the measured attenuation rate and the values expected from Pippard theory: that is,
the magnitude of the measured damping is about three times and approximately 25 times larger
than the values expected for bulk aluminium and silver respectively. According to the Pippard
formula, the damping rate in Al is, thus, about one order of magnitude larger than the damping
rate in Ag. Hence, a larger damping would be expected in superlattices that contain a larger
volume of Al. In fact, the samples studied by Chen et al with different ratios (<1 or >1) of
the Al thickness to the Ag thickness do not exhibit significant change of the attenuation rate,
suggesting an enhanced scattering in the Ag layer.

Here it should be noted that the Pippard formula gives the attenuation of sound by free
electrons in bulk metals, and so we can suppose that the attenuation is increased because of
the effects of the band structures of both the phonons and electrons in superlattices as was
suggested by Chen et al [15]. Moreover, we may wonder whether the apparently enhanced
scattering in the Ag layers also results from the folded band structures. However, up to now
no theoretical study has been made to resolve these points.

The purpose of this paper, therefore, is to study the correction to the Pippard formula
for the attenuation of bulk longitudinal phonons due to the folded band structure in metallic
superlattices. More specifically, our model takes account of: (1) a Kronig–Penney model for
electrons; (2) the continuum elasticity theory for acoustic phonons in superlattices; and (3) the
deformation-potential coupling for the electron–phonon interaction. A remarkable result that
we will predict is the existence of resonant phonon absorption by electrons, which does not
occur in bulk metals. This is mainly due to the alteration of the band structures of the electrons,
and independent of the details of the electron–phonon interaction.

In the next section, we recapitulate the derivation of acoustic dispersion relations for su-
perlattices. Also explicit expressions are given for the displacement fields of phonons. The
electron fields in the Kronig–Penney models are given in section 3. In section 4 the electron–
phonon interaction is formulated, and the resulting expressions for the scattering rates of
phonons are derived in section 5. The numerical calculations of the attenuation rates in Al/Ag
superlattices are developed in section 6. Concluding remarks are given in section 7.

2. Phonons in superlattices: quantized displacement

We consider a periodic superlattice consisting of alternatingA andB layers with layer thickness
dA and dB (the unit period, or bilayer thickness is D = dA + dB), densities ρA and ρB , and
sound velocities vA and vB , respectively. The layer interfaces of the superlattice are taken to
be parallel to the x‖ = (x, y) plane and the growth direction is parallel to the z-direction.

In this work we study the longitudinal phonons propagating in the z-direction perpendicular
to the layer interfaces, i.e., k‖ = 0, where k‖ is the two-dimensional wavevector in the x‖-plane.
The longitudinal-phonon mode is assumed to be decoupled from transverse modes: this is valid
for cubic crystals with interfaces parallel to the (100) or (111) planes. In these conditions, the
elastic equation of motion of the multilayer in the direction z normal to the layers is [16, 17]
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ρ
∂2u(z, t)

∂t2
= ∂σ(z, t)

∂z
(2)

where u is the lattice displacement in the direction z and σ is here the zz-component of the
elastic stress tensor that is related to the displacement by

σ(z, t) = ρv2∂u/∂z (3)

where ∂u/∂z is the strain andρ(v) is eitherρA(vA) orρB(vB) depending on the layer considered.
Looking for solutions of the form u(z, t) = W(z) exp (−iωt) with ω a phonon angular
frequency, the displacement can be written in the general form w(z) = (0, 0,W(z)).

The use of the continuum model is valid for the lattice vibrations in the sub-THz range
considered here, in the metallic superlattice. The continuity of the lattice displacement u(z, t)
and stress σ(z, t) at the interface between any two layers leads to relations between the above
solutions for the displacements in two adjacent layers that can be expressed by a 2 × 2 transfer
matrix T . It has been shown that the matrix elements of T are functions of kA, dA, kB , dB ,
and ZA and ZB , where kI = ω/vI (I = A,B) and ZI = ρIvI is the acoustic impedance. The
matrix elements of the unimodular matrix T , i.e., satisfying det T = 1, are [18]

T11 = cos(kAdA) cos(kBdB)− ZA

ZB
sin(kAdA) sin(kBdB) (4)

T12 = Z−1
A sin(kAdA) cos(kBdB) + Z−1

B cos(kAdA) sin(kBdB) (5)

T21 = −ZA sin(kAdA) cos(kBdB)− ZB cos(kAdA) sin(kBdB) (6)

T22 = cos(kAdA) cos(kBdB)− ZB

ZA
sin(kAdA) sin(kBdB). (7)

For a phonon mode propagating in an infinite superlattice the Bloch theorem requires that
det[T − exp(ikzD) × U ] = 0, where kz (−π/D � kz � π/D) is a Bloch wavenumber,
or superlattice wavenumber, U is the unit matrix, and exp(±ikzD) are the eigenvalues of T .
The dispersion relation of the phonons immediately results from this relation, which was first
derived by Rytov for elastic acoustic waves in stratified media with k‖ = 0, and it takes the
form [19]

cos(kzD) = cos(kAdA) cos(kBdB)− 1

2

(
ZA

ZB
+
ZB

ZA

)
sin(kAdA) sin(kBdB). (8)

This equation determines the superlattice wavenumber kz for a given frequency ω. We assume
that the modifications of the elastic parameters near the interfaces in the metallic superlattices
are small enough to be neglected; we use the bulk values for the sound velocities and mass
densities which are constant in each layer. As explained below, this assumption should be
valid for the Al/Ag superlattice with bilayer thickness larger than about 100 Å. We note that a
phonon with real wavenumber kz is found inside a frequency band of the superlattice and we
call such a phonon an extended phonon in the present paper.

On the basis of these considerations we write the quantized phonon displacement vector
u in the infinite superlattices for k‖ = 0 as [20, 21]

u(x) =
∑
J

(
h̄

2ωJS

)1/2

(aJ + a†
−J )wJ (z) (9)

where x = (x‖, z), J = (kz, j) for a phonon in a perfect, periodic superlattice with j the band
index, S is the normalization area, aJ and its Hermitian conjugate a†

J are the annihilation and
creation operators of a phonon satisfying [aJ , a

†
J ′ ] = δJ,J ′ and wJ (z) = (0, 0,WJ (z)) for the

longitudinal mode. Explicitly, the lattice displacement WJ (z) is written as
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WJ (z) =
∑
n

einkzD{'(z− nD)'(nD + dA − z)ρ
−1/2
A U

(n+1)
A,J (z)

+ '(z− nD − dA)'[(n + 1)D − z]ρ−1/2
B U

(n+1)
B,J (z)} (10)

U
(n+1)
A,J (z) = Ã1,J cos[kA(z− nD)] + Ã2,J sin[kA(z− nD)] (11)

U
(n+1)
B,J (z) = B̃1,J cos[kB(z− nD − dA)] + B̃2,J sin[kB(z− nD − dA)] (12)

where'(z) is the Heaviside unit-step function ('(z) = 1 for z � 0 and'(z) = 0 for z < 0).
The coefficients Ãm,J and B̃m,J (m = 1, 2) in equations (11) and (12) are determined from
the boundary conditions (the continuities of the lattice displacement WJ and the associated
stress) at layer interfaces and the normalization condition

∫ L
0 ρ|WJ (z)|2 dz = 1, where L is

the normalization length (thickness of the superlattice) and ρ is either ρA or ρB depending on
the position z.

3. Electron field in the Kronig–Penney model

In metal–metal contact there should occur charge transfer between adjacent materials such that
the Fermi energy becomes uniform in the thermal equilibrium state. Also, charge neutrality
should be satisfied locally; otherwise an electric field is set up which induces an electric current
inside the system. So the difference between the intrinsic Fermi energies of the bulk metals
induces the potential V (r) in the system, where V (r) = V (z) (=VI , where I , as before,
is either A or B). Here we assume the transition region of the potential to be very narrow.
Thus, as a simple approximation we may assume the Kronig–Penney model for the motion
perpendicular to the layer interfaces, i.e., in the z-direction. We also assume that the metallic
layers A and B have uniform mass: mA = mB = m, the free-electron mass.

The electron wavefunctions ψ(r) are the solutions of the Schrödinger equation with a
potential energy V (r) = V (z). Therefore, within the Kronig–Penney model with an abrupt-
interface approximation, we have to solve the equation for the wavefunction φλ(z) describing
the motion in the z-direction [22]:[

− h̄2

2m

d2

dz2
+ V (z)

]
φλ(z) = Eλφλ(z) (13)

with the following boundary conditions: φλ(z) and the component of its derivative normal to
the interface ∂φλ(z)/∂zmust be continuous across the interface separating two adjacent layers.

Along the layer interfaces, the wavefunction should be described by a plane wave,
exp(ip‖ ·x‖), with p‖ the two-dimensional wavevector in the x‖-plane. The total wavefunction
ψ(r) is thus ψ(r) = exp(ip‖ · x‖) × φλ(z). The wavefunction φλ(z) takes a form similar to
the expression for WJ (z) with a set of quantum numbers λ instead of J , exp(inkzD) being
read here as exp(inpzD)—that is, λ = (pz, i) stands for the quantum numbers specifying the
wavefunction φλ(z), where pz (−π/D � pz � π/D) is the Bloch wavenumber in the growth
direction and i indicates a series of subbands [23]. Thus 0 ≡ (p‖, λ) = (p‖, pz, i) is the set
of quantum numbers specifying the complete electron state in the superlattice and the electron
energy is written as E0 = Ep‖ + Eλ = h̄2p2

‖/2m + Epz,i .
The explicit expression for the envelope wavefunction φλ(z) is

φλ(z) =
∑
n

einpzD{'(z− nD)'(nD + dA − z)φ
(n+1)
A,λ (z)

+ '(z− nD − dA)'[(n + 1)D − z]φ(n+1)
B,λ (z)}. (14)

Here we define V0 as the potential height of theB-layer (the barrier layer for electrons) relative
to the A-layer (the well layer for electrons), which is determined from the difference of the
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Fermi energies EAf and EBf of bulk A- and B-materials, i.e., V0 = EAf − EBf > 0. This
results from the requirement that the Fermi energy Ef should be uniform in the superlattice
(see figure 2). Thus, for Epz,i > V0 the wavefunction in each layer of the (n + 1)th period
is [22, 24]

φ
(n+1)
A,λ (z) = A1,λ cos[qA(z− nD)] + A2,λ sin[qA(z− nD)] (15)

φ
(n+1)
B,λ (z) = B1,λ cos[qB(z− nD − dA)] + B2,λ sin[qB(z− nD − dA)]. (16)

In equations (15) and (16), Aj,λ and Bj,λ (j = 1, 2) are constant coefficients and the
wavenumbers qA and qB are defined through the energy of the electrons Epz,i = h̄2q2

A/2m =
h̄2q2

B/2m + V0. For Epz,i < V0 the trigonometric functions cos[qB(z − nD − dA)] and
sin[qB(z− nD− dA)] in equation (16) for the B-layer should be replaced with the hyperbolic
functions cosh[qB(z− nD − dA)] and sinh[qB(z− nD − dA)], respectively, with qB defined
by Epz,i = −h̄2q2

B/2m + V0.
Next, we introduce the transfer-matrix method [22] and write equations (15) and (16)

together with their derivatives in the forms

Φ(n+1)
A,λ (z) =

(
φ
(n+1)
A,λ (z)

[φ(n+1)
A,λ (z)]

′

)
≡ tA(z− nD)Aλ (17)

and

Φ(n+1)
B,λ (z) =

(
φ
(n+1)
B,λ (z)

[φ(n+1)
B,λ (z)]

′

)
≡ tB(z− nD − dA)Bλ (18)

where Aλ and Bλ are the column vectors given by the transpositions of (A1,λ, A2,λ) and
(B1,λ, B2,λ), respectively. The 2 × 2 transfer matrix t for electrons relevant to the present
system is then defined by t = t̃B t̃A with t̃A = tA(dA)[tA(0)]−1 and t̃B = tB(dB)[tB(0)]−1.
Explicitly, for Epz,i > V0,

t̃I =
(

cos γI q−1
I sin γI

−qI sin γI cos γI

)
(19)

with I = A,B, γA = qAdA ≡ α and γB = qBdB ≡ β, and for Epz,i < V0, t̃A is the same as
equation (19) with I = A but

t̃B =
(

cosh γB q−1
B sinh γB

qB sinh γB cosh γB

)
. (20)

Thus the elements of the transfer matrix t are

t11 = cosα cosβ − qA

qB
sin α sin β (21)

t12 = q−1
A sin α cosβ + q−1

B cosα sin β (22)

t21 = −qA sin α cosβ − qB cosα sin β (23)

t22 = cosα cosβ − qB

qA
sin α sin β (24)

for Epz,i > V0 and

t11 = cosα cosh β − qA

qB
sin α sinh β (25)

t12 = q−1
A sin α cosh β + q−1

B cosα sinh β (26)

t21 = −qA sin α cosh β + qB cosα sinh β (27)

t22 = cosα cosh β +
qB

qA
sin α sinh β (28)

for Epz,i < V0.
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The wavenumber in each layer, qA or qB , and the band index i are related to the superlattice
wavenumber pz of the electrons through the dispersion relation cos(pzD) = (t11 + t22)/2. This
is derived from the continuity conditions of the wavefunction and its derivative at the layer
interfaces, i.e., Φ(n+1)

A,λ (nD + dA) = Φ(n+1)
B,λ (nD + dA) and Φ(n)

B,λ(nD) = Φ(n+1)
A,λ (nD), and also

from the Bloch theorem Φ(n+1)
A,λ (nD) = eipzDΦ(n)

A,λ[(n − 1)D] manifesting the periodicity of
the system. The explicit expression for the dispersion relation is well known and is given
by [22, 24]

cos(pzD) = cos(qAdA) cos(qBdB)− 1

2

(
qA

qB
+
qB

qA

)
sin(qAdA) sin(qBdB) (29)

for Epz,i > V0 and

cos(pzD) = cos(qAdA) cosh(qBdB) +
1

2

(
qB

qA
− qA

qB

)
sin(qAdA) sinh(qBdB) (30)

for Epz,i < V0. For Epz,i > V0, the matrix elements in equations (21)–(24) and the dispersion
relation in equation (29) are quite similar to the corresponding equations for the phonons, with
qA/qB instead of ZA/ZB . The coefficients Aj,λ and Bj,λ (j = 1, 2) in equations (15) and (16)
are also determined from the above-mentioned continuity and periodicity conditions for the
wavefunction (and its derivative) as well as the normalization condition

∫ L
0 |φλ(z)|2 dz = 1.

The quantized electron field in the perfect periodic superlattice is then written as [2, 21]

5(x) =
∑
0

b0φλ(z)e
ip‖·x‖/

√
S (31)

where b0 and its Hermitian conjugate b†
0 are the annihilation and creation operators of electrons

satisfying the anticommutation relations {b0, b†
0′ } = δ0,0′ and {b0, b0′ } = 0.

4. Electron–phonon interaction

We assume the deformation-potential coupling as the source of the electron–phonon interaction
in metallic superlattices. In the Kronig–Penney model the calculated electron concentrations in
theA- andB-layers coincide with those of bulk metals. This means that local charge neutrality
holds in the periodic layered structure and electrons are sensitive to the local lattice vibrations.
Hence for the electron–phonon coupling we employ the deformation-potential constants CA
and CB of the bulk A- and B-metals. Thus, the interaction Hamiltonian is [2, 25]

HI =
∫

d3x 5†(x)C ∇ · u(x)5(x)

=
∑
0′,0,J

(
h̄

2ωJS

)1/2

b
†
0′b0(aJ + a†

−J )δp′
‖,p‖G(p

′
z, pz, J )Fλ′λJ (32)

where C is either CA or CB depending on the position z. The expression for Fλ′λJ is

Fλ′λJ = CA

ρ
1/2
A

∫ dA

0
dz φ∗

A,λ′(z)
dUA,J (z)

dz
φA,λ(z) +

CB

ρ
1/2
B

∫ dB

0
dz φ∗

B,λ′(z)
dUB,J (z)

dz
φB,λ(z) (33)

whereφA,λ(z) = φ
(1)
A,λ(z),φB,λ(z) = φ

(1)
B,λ(z+dA),UA,J (z) = U

(1)
A,J (z), andUB,J (z) = U

(1)
B,J (z+

dA). The integrations of equation (33) can be done analytically with equations (11), (12), (15),
and (16). The results are lengthy and so are given in the appendix. Also in equation (32) G
takes the form [22]

G(p′
z, pz, J ) = G(p′

z, pz, kz) = N;(p′
z − pz − kz) (34)

where N is the number of periods, ;(pz) = 1 if pz is a reciprocal-superlattice vector and
;(pz) = 0 otherwise. This form ofG shows the conservation of the superlattice wavenumbers.
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5. Attenuation rates

For comparison with the Pippard formula for bulk metals [1], we consider the attenuation
rate of the bulk phonons in a perfect, periodic superlattice. Just like in the case for the bulk
metals [1,24], the interaction between an electron and a phonon is assumed to be weak enough
for their respective states to be relatively long lived so that the first-order perturbation theory
can be used to calculate the scattering rate. Thus, applying the golden rule for the transition
rate, we can derive the equation for the deviation ;nJ of the phonon occupation number nJ
from the thermal equilibrium value:

−;ṅJ
;nJ

= τ−1
J = 2π

ωJS

∑
0′,0

|G(p′
z, pz, J )|2|Fλ′λJ |2(f0 − f0′)δp′

‖,p‖δ(E0′ − E0 − h̄ωJ )

(35)

where f0 is the electron occupation number. We again emphasize that we have considered
the phonon with k‖ = 0, i.e., a phonon in a frequency band propagating normal to the layer
interfaces. Note that τJ corresponds to the energy relaxation time and we refer to τ−1

J as the
attenuation rate of the J -phonon.

Here we remark that the electron energy Epz,i in the perfect Kronig–Penney system
depends implicitly on the wavenumberpz and band index i through the dispersion relation (29)
or (30). Comparing with the case of the electron–phonon interaction in a bulk material, these
situations make it rather onerous to complete the calculation of the relaxation time. Explicitly,
the procedure for the calculation of equation (35) is as follows: for given ω and kz, first we
determine the wavenumbers and energies (pz, Epz,i) and (p′

z, Ep′
z,i

′) which satisfy the energy
and superlattice wavenumber conservationEp′

z,i
′ −Epz,i−h̄ωJ = Epz+kz+g,i ′ −Epz,i−h̄ωJ = 0,

where g is a reciprocal-superlattice wavenumber. In general, there exist several sets of initial
wavenumbers and energies (pz, Epz,i) = (p(n)z , E

(n)) (n = 1, 2, . . .) satisfying the above
equation. This is a characteristic feature associated with the folded band structure of electrons.

We further note the fact that at a temperature much lower than the Fermi temperature, the
factor f0−f0′ is unity forEf − h̄ωJ −Epz,i < Ep‖ < Ef −Epz,i and zero otherwise, and also∑

0 = ∑
p‖,λ = [V/(2π)3]

∫
d2p‖

∫ π/D
−π/D dpz

∑
i . Thus the integral over p‖ in equation (35)

gives a factor 2πmωJ/h̄ and it is readily derived:

τ−1
J = LN2

2π

m

h̄

∑
n

|Fλ′λJ |2
∣∣∣∣dEpz,i

dpz
− dEpz+kz+g,i ′

dpz

∣∣∣∣
−1

p
(n)
z ,E(n)

(36)

where |
p
(n)
z ,E(n)

means (pz, Epz,i) should be equal to (p(n)z , E
(n)). Here we note that the energy

Epz,i is not restricted to a value close to the Fermi energy Ef because of the presence of the
energy Ep‖ , and hence E(n) can be any value between 0 and Ef .

Equation (36) is the attenuation rate for the phonons (with k‖ = 0) in superlattices
to be used for the numerical calculations. In the case where the A- and B-layers consist
of the same material, there exists only one pz satisfying dEpz,i/dpz − dEpz+kz+g,i ′/dpz =
(h̄2/m)(pz − p′

z) = −h̄2kz/m and we have Fλ′λJ = CkzD(ρL
3)−1/2 with CA = CB = C,

ρA = ρB = ρ, and L = ND. Thus, equation (36) is reduced to

τ−1
J = C2m2kz

2πρh̄3 . (37)

Because we are considering phonons propagating in the z-direction, this expression for the
attenuation rate coincides with the Pippard formula, equation (1), for the attenuation of high-
frequency longitudinal phonons (satisfying kzle � 1, with le the electron mean free path) in a
bulk metal.
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Figure 1. The dispersion relation of longitudinal phonons propagating normal to the layer interfaces
of the Al/Ag superlattice with dA = dAl = 121 Å and dB = dAg = 97 Å (D = dA + dB = 218 Å).
The inset shows the lattice displacements in the superlattice at the lower edge (solid curve) and the
upper edge (dashed curve) of the lowest-frequency gap marked with the open square and circle,
respectively.

6. Numerical calculations

Now we apply the formulae (36) to the calculation of the attenuation rates of the longitudinal
phonons in an Al/Ag superlattice with dA = dAl = 121 Å and dB = dAg = 97 Å (D = 218 Å).
These layer thicknesses are the same as those of the superlattice used for the picosecond
ultrasound experiment by Chen et al [15]. We also assume other parameters assumed by
Chen et al to analyse phonon properties in Al/Ag superlattices: ρA = ρAl = 2.7 g cm−3,
ρB = ρAg = 10.5 g cm−3, vA = vAl = 6.4×105 cm s−1, andvB = vAg = 4.0×105 cm s−1 [15].
The Fermi energies of electrons in aluminium and silver are 11.63 and 5.48 eV, respectively,
and the difference of these values gives V0 = 6.15 eV for the potential barrier height in the
Kronig–Penney model. The deformation-potential constants are calculated from the Fermi
energies of silver and aluminium as CA = CAl = −7.57 eV and CB = CAg = −3.65 eV.

6.1. Dispersion relations

Figure 1 shows the calculated dispersion relation (together with the displacement profiles
at the lowest zone-boundary frequencies) of the longitudinal phonons propagating along the
growth direction of the Al/Ag superlattice. Because of the large acoustic mismatch between
the constituent materials (ZAg/ZAl = 2.43) the widths of the frequency gaps (∼50 GHz) are
considerable compared with the bandwidths (∼100 GHz).

Figure 2 shows the dispersion relation of electrons calculated from the Kronig–Penney
model together with a schematic diagram of the energy profile for the electrons. Because of
the large thickness (dB = dAg = 97 Å) of the potential barrier (silver layer) for electrons,
the bandwidths are negligibly small at energies below V0, leading to discrete energy levels for
Epz,i < V0. Energy bands of sizable width are found only for Epz,i > V0. In the superlattice
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Figure 2. A schematic energy diagram (on the left-hand side) of the conduction band for electrons
and the dispersion relations (Epz versus pz) of electrons (on the right-hand side) in the perfect,
periodic Al/Ag superlattice (A = Al, B = Ag) with dA = dAl = 121 Å and dB = dAg = 97 Å
(D = dA + dB = 218 Å). Enlarged views of the three energy regions near the bottom, Epz = 0,
Epz = V0, and the top, Epz = Ef , are shown. The Fermi energy and potential height are
Ef = 11.63 eV and V0 = 6.15 eV, respectively.

considered, the number of these discrete levels below V0 is 49, i.e., i = ilevel = 1–49, and
the smallest energy difference among these levels is much larger than the phonon energy of
frequency 1 THz (4.1 meV). The number of energy bands between V0 and the Fermi energy
Ef = 11.63 eV is 56, i.e., iband = 1–56, and for these electron bands the band indices are
assigned as i = iband + 49 = 50–105. No interband transition is allowed, for electrons, by the
absorption or emission of a single sub-THz phonon that we consider.

6.2. Attenuation rate of phonons

The attenuation rates of the extended phonons in the superlattice calculated with the parameters
assumed above are shown in figure 3. In the lowest-frequency band of phonons the
attenuation rate increases linearly with frequency except near the zone boundary. In this
region the magnitude is about half of the attenuation rate for the bulk phonons in aluminium,
τ−1

Al = 6.0 × 10−2ν s−1, obtained from the Pippard formula, equation (1), and larger than the
attenuation rate in bulk silver, τ−1

Ag = 5.67 × 10−3ν s−1. However, as explained below, the

attenuation rate τ−1
J in the low-frequency region is not simply the average of τ−1

Al and τ−1
Ag for

the bulk metals weighted by the relative thickness of the layers.
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The decrease of the attenuation rate near the zone boundary is due to the fact that the
interaction in the Ag layer becomes small. As shown in the inset of figure 1, at the lower
edge of the lowest-frequency gap, the boundaries of the heavier Ag layer vibrate in the same
direction but those of the lighter Al layer vibrate in opposite directions. This means that the
volume change which induces the scattering of electrons occurs predominantly in the Al layer.

Actually the electron–phonon interaction in the Al/Ag superlattice is stronger in the Ag
layer except near the zone-centre or zone-boundary frequencies for which the volume change
in this layer does not occur. This is quite different from the naive expectation by Chen
et al [15] that a larger damping occurs in superlattices that contain a larger volume of Al
than of Ag. The reason is as follows: first we consider an electron in the first band iband = 1
with an energy slightly above the edge of the potential barrier V0, or Epz,i � V0 + 0.01 eV,
for example. The corresponding wavenumbers are qA = qAl � 1 × 108 cm−1 (a well region)
and qB = qAg � 5 × 106 cm−1 (a barrier region). On the other hand, in the sub-THz region
the wavenumbers of a phonon which interacts with electrons are kA, kB � 1 × 106 cm−1.
Accordingly, the order of magnitude of the electron wavenumber in each layer does not change
by the emission or absorption of a phonon. This means that the electron wavefunctionsφA,λ and
φ∗
A,λ′ oscillate much faster than φB,λ and φ∗

B,λ′ , and hence the integral in Fλ′λJ (equation (33))
over the layer thickness (dA, dB ≈ 10−6 cm−1) is much smaller in the Al (A-) layer than in
the Ag (B-) layer.

At higher electron energies, e.g., Epz,i − V0 ∼ 1 eV, both qB and qA are of the order
of 1 × 108 cm−1 and the integrals in equation (33) give comparable magnitudes—but small
compared with the contribution from Epz,i ∼ V0. These results can also be understood from
the analytical expressions for the overlapping integrals given in the appendix. The combined
effects of the deformation-potential constants and the integrals in Fλ′λJ result in dominant
electron–phonon scattering in the Ag layer (the barrier layer for electrons), in spite of the fact
that |CAl| ≈ 2|CAg| and dAl > dAg.

A more interesting result is the fact that the attenuation rate exhibits spiky resonant
structures for phonons in the higher bands, as shown in figure 3 for the second frequency band
of phonons. These resonant structures arise from the Brillouin-zone folding of the periodic
superlattice and the associated deformation of the dispersion curves of both electrons and
phonons. To show this, we have illustrated in figures 4(a) and (b) several energy–momentum-
conserving processes which scatter the phonons of frequencies 0.156, 0.16, and 0.212 THz.
Note that the scattering is enhanced at the first and third frequencies, but no enhancement is
predicted at the second frequency.

The enhanced attenuation at 0.156 THz (the peak labelled A in figure 3) comes from the
two absorption processes, A to A′ and B to B′, that occurred in the lowest electron band above
V0, or iband = 1 (figure 4(a)) and also from the corresponding emission processes. In these
processes both the initial (A or B) and scattered (A′ or B′) electron states exist in the same
band and the region pz < 0 of the mini-zone. Thus, the slopes of the dispersion curve for
those states have the same sign and their magnitudes are nearly equal. This means that there
exist a large number of initial and final electron states that can absorb or emit a given phonon.
Mathematically, the denominator |dEpz,i/dpz − dEpz+kz+g,i ′/dpz| of equation (36) becomes
very small for i = i ′ = 50, or iband = i ′band = 1, leading to the resonant peak of τ−1

J at
0.156 THz.

However, for other scattering processes in the band iband = 2 shown in figure 4(a) the
slopes of the dispersion curves for the initial and final electron states have different signs.
Hence |dEpz,i/dpz − dEpz+kz+g,i ′/dpz| for i = i ′ = 51, or iband = i ′band = 2, does not become
so small and no large enhancement in the scattering is produced. As the phonon frequency
increases, the scattering processes for which the slopes of the dispersion curves at the initial
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and final electron states are close to each other move towards higher bands of electrons. This
effect is the origin of the enhanced scatterings found at higher phonon frequencies. Figure 4(b)
explains why the peak C originates from the scattering processes in the band iband = i ′band = 3
but no such processes contribute to the enhanced attenuation that is found for the point B.

7. Concluding remarks

Stimulated by the experiment by Chen et al [15], we have considered the correction to the
Pippard theory of the electron–phonon interaction in multilayered structures, or superlattices.
We found that the calculated attenuation rate of phonons in metallic superlattices exhibits a
monotonic frequency dependence only at low frequencies in the lowest-frequency band of
phonons. For these frequencies the magnitude of the attenuation rate is comparable to the one
estimated from the simple application of the Pippard theory to bulk metals.

In higher bands of phonons, however, the attenuation rate is predicted to show spiky
enhanced structures. These peaks in attenuation are the resonances due to the folded band
structures of electrons and phonons characteristic of a periodic system. Unfortunately,
however, measurement of the damping rate of the extended phonons in metallic superlattices
has not yet been reported.

An interesting observation is the fact that the attenuation in the Al/Ag superlattice occurs
predominantly in the Ag layer (the barrier layer for electrons). This is a quite unexpected
result because the attenuation of phonons in bulk Al is about a factor of 10 larger than that in
bulk Ag. This is caused by the band structure of electrons in the superlattice composed of Al
and Ag layers.

Here it should be remarked that the sound velocity is modified by the electron–phonon
interaction. For bulk metals this effect was calculated by Steinberg [26]. According to his result
the modification of the sound velocity v due to electrons is small and the correction δv/v is of
the order of 10−4 to 10−5 at frequency 100 GHz. In metallic superlattices the sound velocity
change may also be enhanced, like the experimental attenuation rates. However, it should still
be small even if an order-of-magnitude enhancement occurs in the superlattices. Hence, we
have neglected this effect in the calculation of the attenuation rates via the electron–phonon
interaction.

Finally, we remark that the result that we obtained should also be valid for the attenuation
of extended phonons in a semi-infinite superlattice. The reason is that the presence of
the free surface in the superlattice does not effectively change the scattering rate for the
extended phonons. This is because the electron–phonon matrix element in the perfect, periodic
superlattice deviates from the one in the semi-infinite superlattice by an amount of the order
of the ratio of the volume of a single bilayer to that of the entire superlattice. This ratio should
be vanishingly small for a semi-infinite superlattice with many periods. (Although the surface
electronic states appear in a semi-infinite superlattice in general [27], the continuous energy
spectrum of the extended electrons is essentially the same as the one in the allowed energy band
of the perfect, periodic superlattice.) This is because the energies of electrons of the infinite
(perfect periodic) and semi-infinite periodic systems are both determined from the eigenvalues
of the transfer matrix t which connects the wavefunctions and their derivatives for adjacent
periods, and are insensitive to the boundary conditions [28].
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Appendix

In this appendix we give the explicit expression for the first integral of equation (33). The
second part is obtained by replacing A by B.∫ dA

0
dz φ∗

A,λ′(z)
dUA,J (z)

dz
φA,λ(z)

= kA

i(q ′
A + qA + kA)

{
(X̂λ′XλX̃J − Ŷλ′YλỸJ ){cos[(q ′

A + qA + kA)dA] − 1}

+ i(X̂λ′XλX̃J + Ŷλ′YλỸJ ) sin[(q ′
A + qA + kA)dA]

}
+

kA

i(q ′
A + qA − kA)

{
(X̂λ′XλỸJ − Ŷλ′YλX̃J ){cos[(q ′

A + qA − kA)dA] − 1}

+ i(X̂λ′XλỸJ + Ŷλ′YλX̃J ) sin[(q ′
A + qA − kA)dA]

}
+

kA

i(q ′
A − qA + kA)

{
(X̂λ′YλX̃J − Ŷλ′XλỸJ ){cos[(q ′

A − qA + kA)dA] − 1}

+ i(X̂λ′YλX̃J + Ŷλ′XλỸJ ) sin[(q ′
A − qA + kA)dA]

}
+

kA

i(q ′
A − qA − kA)

{
(X̂λ′YλỸJ − Ŷλ′XλX̃J ){cos[(q ′

A − qA − kA)dA] − 1}

+ i(X̂λ′YλỸJ + Ŷλ′XλX̃J ) sin[(q ′
A − qA − kA)dA]

}
(A.1)

where X̃J = Ã2,J + iÃ1,J , ỸJ = Ã2,J − iÃ1,J , Xλ = A1,λ − iA2,λ, Yλ = A1,λ + iA2,λ,
X̂λ = A∗

1,λ− iA∗
2,λ, and Ŷλ = A∗

1,λ + iA∗
2,λ. We note that only the terms involving q ′

A−qA−kA
are finite in the limit of A = B, i.e. for a bulk metal.
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